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We obtain an exact time-dependent solution of the zero-temperature Kawasaki-type dynamics
of a phase-separation model of a binary mixture of A and B on a linear lattice, starting from a
random arbitrary initial concentration p of one of the components. This generalizes a recent result
by Privman [Phys. Rev. Lett. 69, 3686 (1992)] in which only the symmetrical case of equal initial

concentrations of A and B was studied.

In contrast to the case of two-species diffusion-limited

annihilation, the symmetrical case can be obtained from the asymmetrical one by letting p tend to
1/2 continuously. At any concentration p, the number of domain walls between A and B decays
exponentially to its p-dependent quenched steady value. A Monte Carlo simulation shows excellent
agreement between the numerical and the analytical solutions.

PACS number(s): 05.40.4j, 82.20.—w

There has been much recent interest in the study of the
dynamic behavior of phase-separation models of binary
mixtures [1-7]. In a binary mixture of A and B parti-
cles, there is assumed to be an energy cost € whenever a
domain wall exists between A and B particles. This sys-
tem can be mapped into the usual Ising model, but with
a conserved order parameter (i.e., fixed magnetization).
At low temperature, the A and B particles prefer to be
separated, and a transition occurs to a phase-separated
state with a decreased number of domain walls. Numeri-
cal studies [2,3] have shown this type of phase transition
at low temperature for spatial dimensions higher than
one. In one dimension, however, the entropy is domi-
nant, and there is no transition. Thus, in one dimension,
translation symmetry is preserved, and this makes a few
exact solutions possible for some specific dynamics [4,6].

Dynamics that describe the phase-separation model
conserve the order parameter. One example is that of
Kawasaki [8], which allows the exchange of a pair of
nearest-neighbor particles of different type. In contrast
to the nonconserved dynamics of the usual Ising sys-
tem, such as Glauber’s [9] (that of flipping an individ-
ual spin), for which many exact results are available
[9,10], Kawasaki’s dynamics is more difficult to study
and there is as yet no exact solution at finite temper-
ature. Recently, however, a few exact results [4-6] for a
quenched dynamics at zero temperature, which is a lim-
iting case of Kawasaki’s dynamics, have become avail-
able. Nevertheless, all such exact solutions have been
limited to mixtures having symmetrical particle concen-
trations, i.e., equal particle concentrations of A and B.
As in a quenched dynamics that is nonergodic, the sys-
tem evolves eventually to states with energy that is only a
local, and not a global, minimum. Hence the evolution of
the system will strongly depend on the initial conditions.
This then makes the initial concentration an important
memory parameter and leads us to ask to what extent
the dynamical process depends on the initial concentra-
tions. Are there significant differences between the sym-
metrical and asymmetrical cases, as has been observed
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in two-species diffusion-limited annihilation [11]? These
are the questions we address in this paper.

Let us now consider the Kawasaki dynamics for a
mixture of A and B particles in one dimension. In
this procedure, we randomly pick a pair of particles on
nearest-neighbor sites. Then, if they are of different
types, we exchange the two particles with a probability
3[1—tanh(1BA)], where 3 is the inverse temperature and
A is the difference between the energies of the configura-
tions after and before the exchange. At zero temperature
there are ergodical and quenched nonergodical dynamics.
In the ergodical procedure, exchanges within configura-
tions having equal energies are permitted, while in the
nonergodical dynamics, exchanges are allowed only when
they reduce the system energy [4,6]. Even at zero temper-
ature, the ergodic dynamics is still too difficult to solve,
as the exchanges between degenerate states allow multi-
ple pathways to be followed. Instead, we shall look for ex-
act solutions of the nonergodic dynamics, which reduces
the probabilistic exchange to a deterministic exchange.
Thus the only time evolution operation in the system
is either ... ABAB... —» ...AABB...or ... BABA...
— ...BBAA.... In a description in terms of domain
walls, this corresponds to three consecutive domain walls
transforming to a single domain wall at the center, thus
decreasing the number of domain walls by two. This pic-
ture in terms of domain walls simplifies the Monte Carlo
simulation significantly and will be implemented in our
simulation.

The key to exact solutions of the quenched dynamics
is to introduce a set of probabilities p(n,t) that the occu-
pancy of a randomly selected consecutive n (> 3) lattice
sites is fully alternating, i.e., is occupied, at time t, by n
particles ABAB ... or BABA... [6]. In the domain-wall
representation, this probability function is essentially the
same as the probability function E(n — 1,t), introduced
in solving one-species diffusion-limited coagulation [12],
that n — 1 randomly selected consecutive lattice sites are
empty.

In the asymmetric case of unequal particle concentra-
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tion, we must distinguish whether the cluster of n con-
secutive sites, occupied by A and B particles in a fully
alternating sequence, is ended by an A particle or a B
particle. To overcome this lack of symmetry, we need
more probability functions.

Let us define P,g(n,t) as the probability of finding
n + 2 (n > 1) randomly selected consecutive sites being
occupied, at time ¢, by A and B in a fully alternating
order, and which starts from an « particle and ends at
a 3 particle, where each a and [ represent either A or
B. Clearly, when n is even (odd) only Psp(n,t) and
Pga(n,t) [Paa(n,t) and Ppp(n,t)] are meaningful. In
quenched dynamics, the time evolution of Pug(n,t) is
determined by the hierarchy

_ﬂ)z%%"’_t) — (1 = 1)Pag(n, ) + Pag(n + 1,1)

+P,5(n+ 1,t) 4+ 2P,p(n + 2,t) , (1)

where @ is A (B) if o is B (A4), and similarly for 3.
Three parts contribute to the decreasing rate of proba-
bility Pyg(n,t). The first comes from operations in which
all three domain walls involved are within the cluster cho-
sen, the second comes from operations in which two of
the three domain walls are within the cluster, and the fi-
nal parts come from operations in which only one of the
three domain walls is within the cluster. These are repre-
sented by the first term, the second and the third terms,
and the fourth term on the right hand side of Eq. (1),
respectively. Since a cluster chosen with an even number
of sites n = 2m is quite different from that with an odd
number of sites, we define further

P(m,t) = PAB('I’L, t) —+ PBA(’IL, t)
= ZPAB(Tl,t) N

Q(m,t) EPAA(TL + 1,t) ,

R(m,t)EPBB(n+1,t) , (2)

where the equality follows from the fact that there is still
reflection symmetry in the system. These probability
functions satisfy the equations

|

P(m,t) =

N[ =
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dP t
—% = (2m — 1)P(m,t) + 2[Q(m,t) + R(m,t)]
+2P(m + 1,t)
_19%:’—“ — 2mQ(m,t) + P(m+1,8) +2Q(m + 1,t) ,
—@%?’L) = 2mR(m,t) + P(m + 1,t) + 2R(m + 1,t) .

(3)

Let the system start from a randomly distributed mix-
ture of particles A and B such that the concentration of
A and B particles are p and ¢ (= 1 — p), respectively.
The initial conditions are given by

P(m,0) =2pq(pg)™ ,

Q(m,0) = pq(pg)™ ,

R(m, 0) = pg*(pg)™ . (4)
The structures of the dynamic evolution equations,
Eq. (3), and the initial conditions, Eq. (4), suggest that
we look for solutions of the form

P(m, 1) = u(t)y™ (1)

Qm, 1) = v(t)y™ (1)

R(m,t) = w(t)y™(¢) - (5)
Upon substitution of Eq. (5) in Egs. (3) and (4), one finds
—3(t) =2v(8) ,

—u(t) = —u(t) + 2 [v(t) + w(t)] + 2v(t)u(?) ,
—o(t) = w(t)y(t) + 20 (t)v ()
—w(t) = u(t)y(t) + 2w(t)y(¢) , (6)

where an overdot represents the time derivative, with ini-
tial conditions

7(0) =pg,

u(0) = 2pq ,

v(0) =p°q,

w(0) =pg® . (7)

These equations are simplified if rewritten in terms of
functions v(t) + w(t) and v(t) — w(t). The solutions are

[(qu + /P3) e~ 2VPIT | (2pq — \/Pd) ezmr] e—»zpq(r—%-,ﬂ)(pq)m(l _ 7_)2771—1 ,

Qum,t) = 5 | 5 [2VAT+1) eV — (257 — 1) /P17 + (p — g | 9037 (pg)m i (1 — 2

R(m,t) = Q(m, 1) [poq >

where 7 is a reduced time defined as
T=1—e""t (9)

and Q(m,t) |pq represents interchanging p and g in the
expression Q(m,t). The asymmetrical effects are con-

(8)

f

tained in the terms having factors 2pq — ,/pg or p—q. In
the symmetrical case, p = ¢ = 1/2, all these terms disap-
pear and all the probability functions P,g(n,t) reduce to
one common expression p(n — 2,t)/2, reproducing Priv-
man’s results [6]. Noting that 7 = 1 — e™* — 1 when
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FIG. 1. These curves show the normalized density of do-

main walls I(7)/I(0) for random initial conditions with var-
ious concentrations p (from top to bottom, p = 0.1, 0.3,
and 0.5, respectively), as a function of the reduced time 7
(=1 —e7*). The solid curves are the theoretical results from
Eq. (12) and the dots indicate the results of Monte Carlo
simulations.

t — oo, we find that all the probability functions decay
exponentially to zero [or to their quenched steady values,
as happens for Q(1,t) and R(1,t) only] and the asymme-
try has no effect in the exponents describing the decay;
it affects only the coefficients.

For the phase-separation model, the main interest lies
in the time-dependent density of domain walls denoted
by I(t). This density of domain walls determines the
energy of the system. In quenched dynamics, the rate
equation for I(t) is

dI(t)
5 =2P(L,1) . (10)
From Egs. (3) and (10), one finds that I(t) is actually
determined by P(m,t) and Q(m,t) + R(m,t) only. For a
random initial distribution the initial condition is

I(0) =2pq . (11)

The solution is
Ty = 1= [ e pg e
0

I(0) ~
+(2pq — /Pg)e?VPI ], (12)

which can be expressed in terms of error functions. We
have plotted this normalized domain-wall density as a
function of the reduced time 7 in Fig. 1. In this figure
we also show the results of a Monte Carlo simulation.
One can see the excellent agreement between the numer-
ical simulation results and the analytical results. In all
our Monte Carlo simulations, a one-dimensional lattice
with periodic boundary conditions and N = 108 sites was
used. Thus, the standard error is about 1073, The simu-
lations were carried out in the domain-wall picture rather
than in terms of A and B occupancies. However, the
initial domain-wall configurations were generated from
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FIG. 2. This figure shows the asymptotical values of the
density I(t = oo) of the domain wall, for random initial con-
ditions, as a function of the initial concentration p.

random initial configurations of A and B. The time is
normalized according to the lattice size N.
The quenched steady value is given by

I(t=o00)=I(r=1), (13)

which depends on the initial concentration p. This depen-
dence is shown in Fig. 2. The asymptotic value I(t = o)
takes its maximum at the symmetrical point p = 1/2, in-
dicating that this case is in the most frustrated situation.
Again, the effect of asymmetry arises from the presence
of the factor 2pg — \/pq in Eq. (12) and vanishes when
p = 1/2. When the time is large, the domain-wall den-
sity asymptotically approaches to its p-dependent steady
value in the manner

I(t) = I(o0) ~ %e""’[(%q + /pd)e VA
+(2pg — v/pg)e*VFle™ (14)

i.e., as an exponential decay with an amplitude depend-
ing on the particle concentration.

In summary, we have obtained an exact expression
for the time dependence and initial concentration depen-
dence of the domain-wall density for a one-dimensional
phase-separation model of a binary mixture with zero-
temperature quenched Kawasaki dynamics. This gener-
alizes the previously determined result [4,6] for the sym-
metrical case of equal concentrations of A and B. The
asymmetry in the concentrations has been shown to cause
no major qualitative changes in the asymptotic behavior
of this system.
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